Energy‐based graph convolutional networks for scoring protein docking models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein-Ligand Scoring with Convolutional Neural Networks

Computational approaches to drug discovery can reduce the time and cost associated with experimental assays and enable the screening of novel chemotypes. Structure-based drug design methods rely on scoring functions to rank and predict binding affinities and poses. The ever-expanding amount of protein-ligand binding and structural data enables the use of deep machine learning techniques for pro...

متن کامل

Protein Interface Prediction using Graph Convolutional Networks

We consider the prediction of interfaces between proteins, a challenging problem with important applications in drug discovery and design, and examine the performance of existing and newly proposed spatial graph convolution operators for this task. By performing convolution over a local neighborhood of a node of interest, we are able to stack multiple layers of convolution and learn effective l...

متن کامل

Disease Protein Prediction with Graph Convolutional Networks

Human phenotypes – i.e. our characteristics, conditions and diseases – are not merely a product of our genetic constitution, but rather arise out of an intricate system of interactions between the proteins and other molecules in our cells. 1 This fact has inspired a huge effort to document and understand the network of those protein-protein interactions which we’ll refer to collectively as the ...

متن کامل

Dynamic Graph Convolutional Networks

Many different classification tasks need to manage structured data, which are usually modeled as graphs. Moreover, these graphs can be dynamic, meaning that the vertices/edges of each graph may change during time. Our goal is to jointly exploit structured data and temporal information through the use of a neural network model. To the best of our knowledge, this task has not been addressed using...

متن کامل

Graph Convolutional Networks

We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proteins: Structure, Function, and Bioinformatics

سال: 2020

ISSN: 0887-3585,1097-0134

DOI: 10.1002/prot.25888